
From LU Verteilte Systeme (184.167)

Lab2: Lab2

General Remarks

We suggest reading the following tutorials before you start implementing:
Java RMI Tutorial: A short introduction into RMI.
JGuru RMI Tutorial: A more detailled tutorial about RMI.

Group work is NOT allowed in the lab. You have to work alone. Discussions with colleagues (e.g., in the
forum) are allowed but the code has to be written alone.
Be sure to check the Tricky Parts section for questions!

Submission Guide (for all Labs)

Submission

You must upload your solution using the Teaching Tool before the submission deadline: 25.11.2010, 18:00

CET. - the deadline is hard! You are responsible for submitting your solution in time. If you do not
submit, you won't get any points!
Do not confuse our lab server (pasta.dslab.tuwien.ac.at) with the Teaching Tool. The lab server
is just for testing purposes. We cannot grade any solutions uploaded there.
Upload your solution as a ZIP file. Please submit only the sources of your solution and the build.xml file
(not the compiled class files and no third-party libraries).
Your submission must compile and run in our lab environment. Use and complete the provided ant

template.
Test your solution extensively in our lab environment. It'll be worth the time.
Before the submission deadline, you can upload your solution as often as you like. Note that any existing
submission will be replaced by uploading a new one.
Please make sure that your upload was successful (i.e., you should be able to download your solution - as
the tutors will do during the interview).

Interviews

After the submission deadline, there will be a mandatory interview (Abgabegespräch). You must register
for a time slot to the interviews using the Teaching Tool.
You can do the interview only if you submitted your solution before the deadline!
The interview will take place in the DSLab. During the interview, you will be asked about the solution
that you uploaded (i.e., changes after the deadline will not be taken into account!). In the interview
you need to explain your code, design and architecture in detail.
Remember that you can do the interview only once!

Description

In this assignment you will learn:
the basics of a simple distributed object technology (RMI)

LU Verteilte Systeme (184.167) | Lab2 / Lab2 https://www.infosys.tuwien.ac.at/teaching/courses/dslab/index....

1 of 11 09.11.2010 17:49

how to bind and lookup objects with a naming service
how to implement callbacks with RMI

Overview

In this lab we will build a simple distributed event scheduler similar to doodle. The technology we will use for
this is Java RMI.

An 'event' in the following description does not denote an event in the technical sense (as in event-driven

systems), but refers to some gathering of people for a certain purpose.

Imagine the following scenario: A distributed server system administers events and users. Each server is
responsible for different events and users, that is, each event in the system is known to only one server - the
same holds true for each single user. An event is identified by a system wide unique name. Furthermore, it
contains information about the place to meet, the estimated duration and - most important - a number of possible
dates. The user that has created a particular event can invite other users to join the meeting and vote on one or
more dates that fit best to this user's busy schedule. After some time the author may decide to finalize the event
schedule: The system then automatically calculates the date appropriate to the most attendees and notifies each
participating user about the end of the voting.

Have a look at the following two figures: User Alice wants to be part of our event scheduler network and
therefore has to register in the system (1.), providing a username and a password (for the sake of simplicity,
some details like the password have been omitted in the figures). Since usernames, just like event names, are
globally unique in the system, the server Alice is connected to now initializes a 2-phase commit transaction (for
details see below) to verify the username Alice is available and was not registered on any other server before
(2.). Because this is not the case (3.), the server can commit this new username (4.). The other servers can store
this information for further requests, i.e., to directly address the server responsible for a particular user. After
successful registration (5.), Alice can finally log in by providing her username and the correct password (6.-7.).

LU Verteilte Systeme (184.167) | Lab2 / Lab2 https://www.infosys.tuwien.ac.at/teaching/courses/dslab/index....

2 of 11 09.11.2010 17:49

Figure 1: An example of a distributed namespace and the registration of a new user

For Figure 2, assume user Bob has just created a new event. Bob now invites user Bill to participate and vote for
one or more possible time slots (1.). User Bill is managed by the same server, therefore the server can directly
send him Bob's invitation (2.). Next, Bob decides that Alice should also join the event (3.). Since both users are
registered on different servers, Bob's server first has to forward his invitation to Alice's server (4.), which
finally submits the invitation (5.). After having a short look at the date options (not part of the figure), Alice
gives her vote on the event (i.e., replies to the event invitation) (6.) which again needs to be forwarded to Bob's
server which administers the event (7.). Other users may vote on the event until Bob finalizes it (8.). The server
therefore calculates the best date and notifies all voters that the event is finally scheduled. Since Alice is
registered on a different server, this notification again requires forwarding it to another server first (9.).

LU Verteilte Systeme (184.167) | Lab2 / Lab2 https://www.infosys.tuwien.ac.at/teaching/courses/dslab/index....

3 of 11 09.11.2010 17:49

Figure 1: An example of the communication performed to invite users to an event

As already stated, the figures omit some details your final solution needs to consider. These are described in the
following sections.

Server

Arguments

The Server application should expect the following arguments:
bindingName: the name this server shall use to bind its remote reference in the RMI registry.
initRegistry: a boolean value, i.e. either true or false, indicating whether this server is responsible for
creating the RMI registry or not.
serverNames: a list of names, separated by space characters, indicating the name of the other servers'
remote references.

If any argument is invalid or missing print a usage message and exit.

LU Verteilte Systeme (184.167) | Lab2 / Lab2 https://www.infosys.tuwien.ac.at/teaching/courses/dslab/index....

4 of 11 09.11.2010 17:49

Implementation Details

The distributed system we are going to build will contain a number of servers handling client and other servers'
requests. Each server knows every other server in the network. Concerning RMI, this means that each server
must be able to retrieve all remote object references from the java.rmi.registry.Registry service. This
service can be used to reduce coupling between clients (looking up) and servers (binding): the real location of the
server object becomes transparent. In our case, each server will use the registry both for looking up and binding.

One of the first things a server needs to do is to connect to the Registry. There is exactly one server in the
network that needs to set up the RMI registry (i.e., the init argument is true). This can be achieved by calling
the LocateRegistry.createRegistry(int port) method which creates and exports a Registry
instance on localhost. A properties file (named registry.properties) should be read in from the classpath
(see the hint section for details) to get the port the Registry should accept requests on. The properties file is
provided and can be downloaded here. It also contains the host the Registry is bound to. This information is
vital to the other servers that need to connect to the Registry using the
LocateRegistry.getRegistry(String host,int port) method.

After obtaining a reference to the Registry, this service can be used to bind an RMI remote interface (using
the Registry.bind(String name, Remote obj) method). Remote Interfaces are common Java
Interfaces extending the java.rmi.Remote interface. Methods defined in such an interface may be invoked
from different processes or hosts. In our case, methods may be invoked by clients as well as by other servers.
Since both need a completely different and independent set of remote methods, do the following: The remote
object you bind to the registry should contain exactly two methods, one for retrieving a remote callback for
servers and one for retrieving a remote callback for clients. Each of these callback objects again implements a
remote interface, but the methods defined there are now designated to be either used by a server or a client. This
way, you only have to bind a single object to the registry. We will talk about a more important advantage of this
approach in a moment.

Binding the remote object is only half the job, of course. The server also needs to lookup the references of the
other servers' remote objects using the Registry.lookup(String name) method. The names of the other
server's remote references were passed on startup (see the serverNames argument for details). Since the
servers start one after another, this means that in the moment of lookup, a particular server might not have bound
its remote reference to the Registry yet. Therefore, you need do the lookup in a separate thread, recurrently
retry the lookup every 500 milliseconds until the server could be found. The method will return an instance of
Remote, which you need to cast to the server's main remote interface first. You can then use this instance to
retrieve the RMI callback designated for servers.

You are then ready to serve requests. Requests are handled by one of the three types of remote objects (this also
means you have to create three different remote interfaces): One implements the methods that may be called by
clients, one that is designated to be used by servers, and finally the remote object that was also bound to the
Registry, containing two methods that return instances of the two remote objects mentioned before.
Concerning the method that is used by servers, you can always return the same instance of the respective remote
object. However, since some of the interactive commands a client can invoke require some kind of session
management, always return a fresh new instance of the remote object that serves client requests. This way, each
instance is unique to a particular user and you can easily make sure a user fulfills the prerequisite of the
respective commands, e.g., being logged in or being the author of the respective event.

To make your object remotely available you have to export it. This can either be accomplished by extending
java.rmi.server.UnicastRemoteObject or by directly exporting it using the static method
UnicastRemoteObject.exportObject(Remote obj, int port). In the latter case, use 0 as port: This

LU Verteilte Systeme (184.167) | Lab2 / Lab2 https://www.infosys.tuwien.ac.at/teaching/courses/dslab/index....

5 of 11 09.11.2010 17:49

way, an available port will be selected automatically.

Distributed Transaction using 2-Phase Commit

Every time a user logs in, he/she always uses the same server to access the event scheduling system. That is,
each user is managed by exactly one server. The username serves as a globally unique identification in our
distributed system. Therefore, to avoid name conflicts when a new user registers, you have to start a distributed
transaction.

Just like a regular (local, single database) transaction, a distributed (or federated) transaction also needs to
ensure the ACID properties (Atomicity, Consistency, Isolation, Durability). To achieve this, distributed
transactions make use of the 2-phase commit protocol. A sample definition of 2-phase commit is given in [1]: "An

atomic commitment protocol which ensures that a transaction is terminated the same way at every site where it

executes. The name comes from the fact that two rounds of messages are exchanged during this process". For the
interested reader, more information can be found on the Web, for instance in this article from IBM
developerWorks.

The 2-phase commit, applied to our scenario, involves the following two phases: In the first phase, the server
asks the other servers whether a user with this username exists or is about to be created by another distributed
transaction. The second phase depends on the outcome of the first phase: If the name is not available, registration
is not successful and the server has to inform the other servers about this rollback. Otherwise, the sever can
register the new user and tell the other servers about it (commit). This way, each server knows the machine that
manages a particular user. This information can be useful for requests the newly registered user is involved in.

The server also needs to maintain all events that were created by the users it manages. Just like a user, an event
is globally identified by a name (specified by the creating user). You need to use the same approach mentioned
above (2-phase commit) to guarantee an event name is actually available.

Important Points to Consider

For further details on the application logic, please refer to Client's interactive commands.

Make sure to synchronize the data structures you use to manage users and events. Even though RMI hides many
concurrency issues from the developer, it cannot help you at this point. You may consult the Java Concurrency

Tutorial to solve this problem.

The data does not need to be persisted after shutting down the server. You can assume that all servers are up
before the first user registers, that is, you do not need to implement a protocol that synchronizes the data among
distributed servers. You may also assume that the other servers always remain accessible throughout the
application's runtime.

For shutting down servers, have a look into the hint section. The server has to shut down after pressing the Enter
key.

Part B - Client

Arguments

The client application should expect the following argument:

LU Verteilte Systeme (184.167) | Lab2 / Lab2 https://www.infosys.tuwien.ac.at/teaching/courses/dslab/index....

6 of 11 09.11.2010 17:49

serverName: the name of the remote reference in the RMI registry of the server that shall be
responsible for this client.

If the argument is missing print a usage message and exit.

Implementation Details

At startup, the client reads out the registry.properties file to obtain the information where the RMI
registry is located. The client is then able to retrieve the remote reference of the server using the serverName
argument provided on startup. Next you should export the client's remote object so that the server can notify the
user about certain events. The classes and methods you will need for all these steps have already been explained
above: LocateRegistry.getRegistry(String host,int port), Registry.lookup(String
name) and UnicastRemoteObject.exportObject(Remote obj, int port). Note that a client, in
contrast to the servers, must not bind any objects to the Registry.

After these steps, the user can already type in commands. Your client needs to check whether all required
arguements were provided (print a usage message otherwise), but it is the server's task to check whether a
specified user or event exists; that is, your server should be able to deal with wrong inputs.

Some of the following commands require a successfully logged in user. Your server implementation needs to
throw an exception and pass it back to the client if this is not the case.

Interactive commands

!register <username> <password>

This command creates a new user account on the server. The username must be globally unique, i.e., there
must not exist another user with the same username on this or any other server in the system. To ensure
this, the server might need to use the aforementioned 2 phase commit protocol. This command therefore
has two different results: Either the registration is successful and the user can log in in the next step, or
the user needs to register with another username. Inform the user about the outcome of the operation.

E.g.:
>: !register Bob 12345

Username already registered.

>: !register Alice 12345

Successfully registered.

!login <username> <password>

The credentials provided during registration can be used to log in. The server needs to check the provided
credentials and inform the user about the outcome of the operation; any further communication with other
servers in the system is not required. Together with the credentials, the client should also send its remote
object as a callback object for the server. Without the callback object, the server has no possibility to
notify the client about event invitations or event finalizations. A successful login is required for any of the
following commands (the only exception from this is !exit).

E.g.:
>: !login Alice 54321

Wrong username or password.

>: !login Alice 12345

LU Verteilte Systeme (184.167) | Lab2 / Lab2 https://www.infosys.tuwien.ac.at/teaching/courses/dslab/index....

7 of 11 09.11.2010 17:49

Successfully logged in.

!create <name> <location> <duration in minutes>

This command is used to create a new event with the specified name, location and estimated duration.
Note that the name of the event must be globally unique. To ensure this, the server should use the same
approach it already uses to fulfill the !register command (again, other servers can use the information
from this step for further user requests). This also means that a success of this operation is not guaranteed
(therefore, inform the user about the outcome of the operation). When storing the event, the server should
also append information about the user that created this event. Creating an event requires a logged in user.

E.g.:
>: !create our_meeting library 90

Event created successfully.

!addDate <name of event> <date: dd.MM.YYYY/HH:mm>

Creating an event is not enough. Using this command, the author of the event can add a single possible
date. To add more than one option (which makes much sense since this is what all the voting is about) the
user has to call this method several times. Please stick to the stated date pattern and consult the Tricky

Parts section for how to convert a String into a java.util.Date object. The only user allowed to add
dates is the author of the event itself (i.e., the user that has created it before). Therefore, throw an
exception if the user is not the author of such an event. Adding dates is possible until the event is finalized
(that is, you can still add dates even though other users might already have voted).

E.g.:
>: !addDate our_meeting 25.11.2010/18:00

Date option added.

!invite <name of event> <username>

After creating an event (and probably adding some date options), the author can invite other users to join
the event and vote on the possible date options. Again, the only user allowed to invite other users is the
author of the event itself. The server should keep track of the users that were invited to a particular event.
It may also need to forward the invitation to a second server responsible for the invited user. A client's
remote interface should contain a method to be notified about event invitations. The invitation message the
user receives should be printed to the console and should at least contain the event's unique name.
However, you do not have to inform the author about the outcome of the operation.

E.g.:
>: !invite our_meeting Bob

!get <name of event>

This command retrieves current information about the specified event and prints it to the user's console. It
may be called by any user logged in (invitation is not required). The retrieved data does not need to
contain information about every user's vote, but should at least specify all possible date options or - if the
event has already been finalized - the fixed date of the event. Note that this command might require some
communication between different servers, for the server that manages the requesting user and the server
that manages the specified event may not be the same. In case the event does not exist, tell the user about

LU Verteilte Systeme (184.167) | Lab2 / Lab2 https://www.infosys.tuwien.ac.at/teaching/courses/dslab/index....

8 of 11 09.11.2010 17:49

it.

E.g.:
>: !get our_meeting

Event: our_meeting

Location: library

Duration: 90 min.

Options: 25.11.2010/17:00 25.11.2010/17:30 25.11.2010/18:00

!vote <name of event> <date: dd.MM.YYYY/HH:mm> ...

The author of the event and every user that has received an invitation for it can vote on the respective
event exactly once. Voting a second time or voting on an event the user has not been invited to must be
ignored by the server (that is, you do not need to inform the user about the outcome of the operation).
Voting works the following way: The user studies the possible date options of the event and specifies the
dates he/she can and is willing to attend. When entering the command, multiple dates can be separated by
whitespaces.

E.g.:
>: !vote our_meeting 25.11.2010/17:30 25.11.2010/18:00

!finalize <name of event>

After some time of voting, the author may decide to fix the date of the event and finalize it. The server
then calculates which date option is the most attractive, i.e., has received most votes. In case there are
two or more such dates, the server automatically picks the earliest of them. After finalization, voting or
adding dates is no longer possible for this particular event. Next, the server needs to notify each
participating user (that is, each user that has voted) about the finalization of the event. A notification
should result in a message printed to the user's console. If the event does not exist or the is not the author,
pass an exception to the calling client.

E.g.:
>: !finalize our_meeting

!logout

This command logs out the currently logged in user. The server should remove any existing callback object
it may have stored for this client. If the user is no longer logged in, the server can drop any notifications
addressed to this user (i.e., you do not have to store invitations and finalization notifications until the user
logs in again).

E.g.:
>: !logout

You have been logged out.

!exit

Shuts down the application. Make sure to free all acquired resources orderly before exiting.

Lab port policy

LU Verteilte Systeme (184.167) | Lab2 / Lab2 https://www.infosys.tuwien.ac.at/teaching/courses/dslab/index....

9 of 11 09.11.2010 17:49

Since each student has to start its own registry service (which requires an unused port for listening for requests),
we have to make sure that each student uses its own port (this has to be adjusted in registry.properties).
So if you are testing your solution in the lab environment (i.e. on the lab servers) you have to obey the following
rule: you may only use the port 10.000 + dslabXXX * 10 for the registry. So if your account is dslab250 you have
to use the port 12500.
As you might have thought of your remote objects also require an unused port. But since we are using the registry
for mediation purposes, this can be an anonymous (any available port selected by the operating system) port (see
exporting objects for more details).

Ant template

As in Lab1 we provide a template build file (build.xml) in which you only have to adjust some class names. Put
your source code into the subdirectory "src", place the registry.properties file into the "src" directory
(the ant compile task then copies this file to the build directory). Put the src directory including
registry.properties and build.xml into your submission.
Note that it's absolutely required that we are able to start your programs with the predefined commands!

Hints & Tricky Parts

To make your object remotely available you have to export it. This can either be accomplished by
extending java.rmi.server.UnicastRemoteObject or by directly exporting it using the static
method java.rmi.server.UnicastRemoteObject.exportObject(Remote obj, int port).
Use 0 as port, so any available port is selected by the operating system.

Before shutting down a server or client, unexport all created remote objects using the static method
UnicastRemoteObject.unexportObject(Remote obj, boolean force) – otherwise the
application may not stop.

Since Java 5 it's not required anymore to create the stubs using the RMI Compiler (rmic). Instead java
provides an automatic proxy generation facility when exporting the object.

Take care of parameters and return values in your remote interfaces. In RMI all parameters and return
values except for remote objects are passed per value. This means that the object is transmitted to the
other side using the java serialization mechanism. So it's required that all parameter and return values are
serializable, primitives or remote objects, otherwise you will experience
java.rmi.UnmarshalExceptions.

To create a registry, use the static method
java.rmi.registry.LocateRegistry.createRegistry(int port). For obtaining a reference
in the client you can use the static method
java.rmi.registry.LocateRegistry.getRegistry(String hostName, int port). Both
hostname and port have to be read from the registry.properties file.

We also provide a template properties file. Make sure to set the port according to our policy.

Reading in a properties file from the classpath (without exception handling):

java.io.InputStream is =

ClassLoader.getSystemResourceAsStream("registry.properties");

LU Verteilte Systeme (184.167) | Lab2 / Lab2 https://www.infosys.tuwien.ac.at/teaching/courses/dslab/index....

10 of 11 09.11.2010 17:49

if (is != null) {

java.util.Properties props = new java.util.Properties();

try {

props.load(is);

String registryHost = props.getProperty("registry.host");

...

} finally {

is.close();

}

} else {

System.err.println("Properties file not found!");

}

To parse a String and make it a java.util.Date, you can use the java.text.SimpleDateFormat
class:

String input = ...

java.text.SimpleDateFormat formatter = new

java.text.SimpleDateFormat("dd.MM.yyyy/HH:mm");

java.util.Date date = formatter.parse(input);

Further Reading Suggestions

APIs:

RMI: Remote API, UnicastRemoteObject API, Registry API, LocateRegistry API

Properties: Properties API

IO: IO Package API

Tutorials

JavaInsel RMI Tutorial: German introduction into RMI programming.

Literature

[1] M. Tamer Özsu. Distributed Database Systems. http://softbase.uwaterloo.ca/~ddbms

/publications/ozsu/EIC/eic.pdf

Retrieved from https://www.infosys.tuwien.ac.at/teaching/courses/dslab/index.php?n=Lab2.Lab2
Page last modified on October 28, 2010, at 06:08 PM CET

LU Verteilte Systeme (184.167) | Lab2 / Lab2 https://www.infosys.tuwien.ac.at/teaching/courses/dslab/index....

11 of 11 09.11.2010 17:49

