
VL Logikorientierte Programmierung

Prolog Exercise

Uwe Egly, Michael Fink, Hans Tompits

Technische Universität Wien
Institut für Informationssysteme, Arbeitsbereich Wissensbasierte Systeme 184/3

Summer term 2009

1 Introduction

In this paper, you will find the Prolog exercise as well as additional information and hints
for its solution.

The goal of the first exercise is the implementation of a simple theorem prover for
ortho-logic (OL). From the introductory courses of your studies, you shouldknow what a
Gentzen (or sequent) system (for classical propositional logic) is. Just in case you have
forgotten it, a brief description follows.

The basic objects of a sequent system aresequents of the form

Γ ⊢ ∆

whereΓ, ∆ are either sets, sequences or multi-sets of formulas. We will work with sets
of formulas in the following. Additionally, we will restrict our attention to sequents with
at most two occurrences of formulas. We call such sequents2-sequents. Ortho-logic can
be characterized by a Gentzen system where every sequent is a2-sequent. We call this
Gentzen systemGOL. Axioms for GOL are sequents of the formf ⊢ f for a formulaf .
The inference rule ofGOL are as follows:

M ⊢ a, N

M ⊢ a ∨ b, N
R1

M ⊢ b, N

M ⊢ a ∨ b, N
R2

M, a ⊢ N M, b ⊢ N

M, a ∨ b ⊢ N
R3

M, a ⊢ N

M, a ∧ b ⊢ N
R4

M, b ⊢ N

M, a ∧ b ⊢ N
R5

M ⊢ a, N M ⊢ b, N

M ⊢ a ∧ b, N
R6

M, a ⊢ N

M ⊢ ¬a, N
R7

M ⊢ a, N

M, ¬a ⊢ N
R8

M ⊢ N
M, a ⊢ N

R9
M ⊢ N

M ⊢ a, N
R10

Such a system is not well-suited for a proof search by computers, for which reason
we will construct a simpler system in the following. This system is based onnegation
normal form (NNF). A formula is in NNF if (i) there are no other connectives than∧,∨,¬

in the formula, and (ii) the negation signs occur only in front of propositional formulas.
Fortunately, every formulaf has a NNFf ′ and it holds thatf is provable inGOL iff f ′

is provable inGOL. Your first task is to write a Prolog program for constructingthe NNF
of a given formula (mainly by applying deMorgan’s laws and the law of double negation
elimination).

2 Translations of Formulas Into Negation Normal Form

Exercise 1: Implement a translation of an arbitrary formula with the connectives¬,∨,∧

into a negation normal form. Use the predicate



nnf(+InFormula,-OutFormula)

and denote formulas over propositional variables (in lower-case letters), the connective¬
by -, the connective∨ by v, and the connective∧ by &. Additionally, define the operators
as follows:

op(425, fy,-)
op(450,yfx,&)
op(500,yfx,v)

The goal

:- nnf(-(a & (-(-(-b)) v c)),OutFormula).

should result in a single answerOutFormula = -a v (b & -c). Obey that consec-
utive negations require parentheses. Choose (and document!) 10 cases to test the normal
form translation. 3

3 Proof Search in GOL
+

The input formula has been translated into NNF. Next, we consider the systemGOL
+,

which we will use in the following. The axioms are of the form

⊢ a,¬a

wherea is (necessarily) a propositional variable (why?). We can simplify the inference
rules resulting in the following rules forGOL

+.

⊢ e, N

⊢ e ∨ f, N
∨

⊢ f, N

⊢ e ∨ f, N
∨

⊢ e, N ⊢ f, N

⊢ e ∧ f, N
∧

⊢ N
⊢ e, N

W

Thereby,e, f are formulas andN is a set of formulas with cardinality≤ 1.

Exercise 2: a) Implement a predicate

literalp(+InFormula)

which detects whether the given input formulaInFormula in NNF is a literal (= a propo-
sitional variable or its negation). Examples of goals and their answers are:

yes no
literalp(a) literalp(-a v b)
literalp(-a) literalp(-a v b & c)

b) Implement a predicate

no or(+InFormula,-NoOR)

which computes the number of occurrences of the connectivev in InFormula in NNF.
Examples of goals and their answers are:

no or(a,N) 7→ N = 0 no or(-a v b,N) 7→ N = 1
no or(-a,N) 7→ N = 0 no or(a v b & (c v d),N) 7→ N = 2

3

Before we continue with the actual automated proof search, we consider the formula
¬p ∨ (¬q ∨ (q ∧ (p ∨ ¬q))) and one of its proof inGOL

+.

2



⊢ q, ¬q

⊢ q, ¬q ∨ (q ∧ (p ∨ ¬q))
∨

⊢ q, ¬p ∨ (¬q ∨ (q ∧ (p ∨ ¬q)))
∨

⊢ p, ¬p

⊢ p, ¬p ∨ (¬q ∨ (q ∧ (p ∨ ¬q)))
∨

⊢ p ∨ ¬q, ¬p ∨ (¬q ∨ (q ∧ (p ∨ ¬q)))
∨

⊢ q ∧ (p ∨ ¬q), ¬p ∨ (¬q ∨ (q ∧ (p ∨ ¬q)))
∧

⊢ ¬q ∨ (q ∧ (p ∨ ¬q)), ¬p ∨ (¬q ∨ (q ∧ (p ∨ ¬q)))
∨

⊢ ¬p ∨ (¬q ∨ (q ∧ (p ∨ ¬q)))
∨

In order to implement proof search, we use a three place predicate:

prove2(SeqFormula1,SeqFormula2,MaxNoOfWeakenings)

Thereby,SeqFormula1 andSeqFormula2 denote the formula occurrences in the 2-
sequent andMaxNoOfWeakenings denotes the maximal number of the ruleW in any
branch of the proof tree. The use of this boundary is necessary in order to achieve termina-
tion of the search.

As you might have observed, the first two arguments ofprove2 represent the 2-
sequent which has to be proved. With this representation, there is a minor difficulty: se-
quents with less than two occurrences of formulas cannot be represented in this way (if we
fix the arity of the predicate). From theory, we know that sequents with no formula at all
cannot occur in the proof. It remains to find a solution for thecase when we have exactly
one formula in the sequent.

The solution is simple. If we have a sequent with exactly one formula, we write this for-
mula onboth argument positions. Moreover, we check in the implementation ofprove2
whether the sequent contains one or two formulas. In the former case,SeqFormula1 =
SeqFormula2, and in the latter case, the two formulas differ.

In the following table, we classify the types of formulas which can occur in 2-sequents.

type 1 ∧ literal ∨ literal ∧ ∧ ∨ ∨ W ∨

type 2 literal ∧ literal ∨ ∧ ∨ ∧ W ∨ ∨

A table entry of the form∧ (∨) means that the correspondingSeqFormulai is a con-
junction (disjunction). A table entry literal means that the correspondingSeqFormulai
is a literal. The table entryW indicates applicability of the ruleW . Observe thatW occurs
only together with disjunction. This isnot an error but the application of a result from [1]
stating the completeness of proof search under this restriction.

In the following, we provide implementations for the axiomsand the cases (∧, literal)
and (∨, W).

Axiom

prove2(A,-A,_NOW).
prove2(-A,A,_NOW).

(∧, literal)

prove2((F1 & F2), A, NOW) :-
literalp(A), prove2(F1,A,NOW), prove2(F2,A,NOW).

(∨, W)

% If both formulae are the same, the set is essentially unary
% and no weakening should be possible.
prove2((F1 v F2), Z, NOW) :-

NOW > 0, Z \== (F1 v F2), Z \== (F2 v F1),
prove2((F1 v F2), (F1 v F2), NOW-1).

3



Exercise 3: Complete the proof search by implementing the remaining cases from the
above table. Observe that there aretwo rules for disjunction inGOL

+. Test the predicate
prove2 by constructing at least 10 formulas in NNF and counting their occurrences of
disjunctions. Document your test cases together with the result of the proof search. Explain
that you have considered all relevant cases. 3

4 The Whole Prover

We are now ready to construct the whole system from the components discussed so far.
Define a rule of the following form.

prove(InFormula) :-
nnf(InFormula,NNFFormula),
no or(NNFFormula,NoOr),
prove2(NNFFormula,NNFFormula,NoOr).

Exercise 4: Test the system with the following formulas and check the resulting answers
against the expected ones.

formula expected answer
-p v (q & (p v -q)) no
-p v p yes
-p v (-q v (q & (q & (p v -q)))) yes
-p v (-q v (q & (p v -q))) yes
-p v (-(-p) & (-p v -q)) v q yes

Optional Exercise 1: Proof Generation (5 points)

The goalprove does not return a proof in the success case but only the answeryes.
Strictly speaking,prove implements a decision procedure. Extend the prover such that a
proof is returned whenever the formula is provable. Print the proof with Prolog’s output
predicates. 3

Optional Exercise 2: A Prover for Lattices (5 points)

Investigate how the discussed procedures can be used to implement a proof system for
lattices (and implement it).

If you have questions don’t hesitate to ask the teaching assistants.

Have fun!

References

[1] U. Egly and H. Tompits. On Different Proof Search Strategies for Orthologic.Studia
Logica, 73:131–152, January 2003.

4


