
VL Logikorientierte Programmierung

Answer-Set Programming: Exercise 1

Uwe Egly, Michael Fink, and Hans Tompits

Institut für Informationssysteme,
Arbeitsbereich Wissensbasierte Systeme 184/3,

Technische Universität Wien
Summer term 2009

1 Introduction
This exercise deals with problems associated with organising scientific conferences. The
task is to construct, for each problem, suitable extended logic programs (ELPs) such that
the solutions of a given problem are determined by the answer sets of the programs. The
specification of the problems should be in such a way that the guess-and-check feature
of answer-set programming is taken into account, by using default negation, disjunctions,
and integrity constraints as essential formalisation tools. The evaluation of the constructed
programs shall be carried out with the system DLV (http://www.dlvsystem.com),
which is available in the lab accounts. Special features of DLV, which extend standard
answer-set programming language constituents, like weak constraints and aggregate func-
tions, shall not be employed for constructing the programs in this example—these features
will be the subject of the next exercise.

2 General Problem Description
One of the integral parts of scientific work is the distribution of scientific results. There
are different ways to do this, e.g., through conferences, workshops, symposia, journals, or
book contributions. The usual way for publishing a scientific paper is by means of a peer-
review procedure, where referees—usually other scientists—decide about the acceptance
of a paper. Depending on the scientific area, there are different policies for the publication
process; here, we are interested in the problem of assigning referees for submissions to a
conference as it is typical for the area of computer science.

Conferences are held about specialised topics in periodic intervals, usually annually or
bi-annually. For submitting a paper, there are deadlines until this can be done. A conference
has a program committee (PC) and an organising committee. The program committee is
responsible for the selection of submitted papers; the organising committee is responsible
for carrying out the actual conference. The PC has a program chair (PC-chair), which
usually consists of one or two members from the PC.

For determining the acceptance or rejection of a submitted paper, the latter are assigned
to members of the PC which in turn choose suitable referees for them. The referees, then,
give recommendations about the acceptance or rejection of a paper, and the members of
the PC eventually decide about the final outcome. Accepted papers are then published in
a conference proceedings and must be presented at the conference (usually in a 20 to 30
minutes talk).

In this exercise, the problem of assigning the submitted papers to the members of the PC
shall be modeled in terms of logic programs under the answer-set semantics. The precise
problem description is as follows:

• The assignment of the submitted papers among the members of the PC is based in
terms of keywords:



– Each paper must select exactly one keyword which characterises its area, and
analogously each member of the PC must select exactly three keywords which
characterise his or her area of competence.

– The keywords—both for the submissions and the members of the PC—are se-
lected from a given list of keywords.

• The assignment of the submissions among the PC-members should be chosen in
such a way that each PC-member obtains at most four papers and each paper must be
from his or her area of competence. Moreover, each paper must be assigned to four
different PC-members.

• Each paper is associated with its authors. PC-members are allowed to submit papers
but not more than one. If a paper was authored by a PC-member, it has to be assigned
to a PC-member different from that author.

• PC-members may state a conflict of interest with a paper, e.g., for the reason of an
ongoing collaboration between the PC-member and one of the paper’s authors. In
case of such a conflict, the paper under consideration will not be assigned to that
PC-member.

We call this problem the referee problem in what follows. We will solve this problem
by means of two subtasks.

3 Subtask 1

3.1 Definition of the Check-Program
In the first part of the task, construct a program check.dl which checks, given an assign-
ment of submissions to members of the PC, whether the following conditions hold:

(1) each PC-member is assigned with at most four submissions;

(2) for every PC-member M , no submission assigned to M has a keyword which is not
one of the keywords of M (i.e., which is not one of the areas of competence of M );

(3) no submission and no PC-member lists a keyword which is not taken from the given
list of keywords;

(4) no PC-member has submitted more than one paper;

(5) no submission authored by a PC-member is assigned to that PC-member;

(6) no submission is assigned to a PC-member who stated a conflict with that paper.

The given assignment of submissions to referees is assumed to be stored in some input files
(described below) containing the following data:

• the names of the PC-members;

• the submitted papers;

• the list of keywords;

• the authors of each paper (each paper has at least one author);

• the keywords assigned with each submission (every submission must have exactly
one keyword) and the keywords assigned with each member of the PC (every PC-
member must be associated with exactly three keywords);

2



• the PC-members together with their conflicting papers

• the assignment of submissions to the members of the PC.

The input must be specified such that these conditions are met. Furthermore, you must
use the following predicates for the construction of program check.dl as well as for the
input data:

• pc(M): M is a member of the PC;

• paper(P): P is a submitted paper;

• keyword(K): K is a keyword;

• author(A,P): A is author of the submitted paper P;

• conflict(M,P): PC-member M has a conflict with paper P;

• associated(O,K): object O (either a member of the PC or a submission) has an
associated keyword K;

• assigned(P,M): the submission P is assigned to PC-member M;

The program check.dl should satisfy the following condition:

• check.dl, together with the input data, possesses an answer set precisely when
Conditions (1)–(6) are met.

Important: Do not use any aggregate functions for constructing the program check.dl!

3.2 Testing the Check-Program
Test the functionality of your program check.dl by constructing five test cases. To this
end, for each test case n (1 ≤ n ≤ 5), safe your data in the following files:

• pcn.dl: contains the names of the PC-members, i.e., facts of form pc(M), the
keywords, i.e., facts of form associated(M,K), and the conflicts, i.e., facts of
form conflict(M,P), where M is a PC-member, K is a keyword, and P is a paper.

• submissionsn.dl: contains the submitted papers, i.e., facts of form paper(P),
as well as authors and keywords of the papers, i.e., facts of form author(A,P) and
associated(P,K), where A is a author, P is a paper, and K is a keyword;

• kwn.dl: contains the list of keywords, i.e., facts of form keyword(K).

• asgnn.dl: contains the assignment of papers to members of the PC, i.e., facts of
form assigned(P,M).

For testing your program, note that it is beneficial to use both positive tests (correspond-
ing to a correct behaviour) and negative tests (violating the specification).

4 Subtask 2

4.1 Definition of the Guess-Program
Now construct a program guess.dl which assigns, given a collection of submissions
and a given PC, the submissions to the members of the PC in such a way that the following
condition is satisfied:

3



(∗) each submission is assigned to exactly four members of the PC;

Use the above defined predicates

pc(M), paper(P), and assigned(P,M).

The program guess.dl should be constructed in such a way that the following prop-
erty is met:

• the answer sets of guess.dl, together with the input data, yield all assignments of
submissions to the members of the PC which satisfy Condition (∗).

4.2 Testing the Overall Program
Use your test files from Subsection 3.2—but without the files asgnn.dl (1 ≤ n ≤ 5)—
to test the overall program consisting of guess.dl and check.dl, solving the referee
problem.

Important:

1. Be sure that you follow the naming conventions as pointed out above.

2. All of the files mentioned above should be contained in one directory!

3. Do not include the command #maxint in your files—rather, execute DLV with the
corresponding command-line option -N to specify the known numbers.

4. Do not use any weak constraints or aggregate functions for specifying your programs.

In case of questions, please ask the teaching assistants or send an email to

logprog-fragen-ss09@kr.tuwien.ac.at.

4


