
VL Logikorientierte Programmierung

Answer-Set Programming: Exercise 2

Uwe Egly, Michael Fink, and Hans Tompits

Institut für Informationssysteme,
Arbeitsbereich Wissensbasierte Systeme 184/3,

Technische Universität Wien
Summer term 2009

1 Introduction

In this exercise, search and optimization problems, again in the context ofscientific confer-
ence organization, shall be solved. Once more, the task is to construct, for a given problem,
a suitableextended logic program(ELP) according to theGuess-and-Checkparadigm such
that the solutions of the given problem are determined by theanswer sets of the program.
However, besides default negation, disjunction, and integrity constraints, this time it is also
allowed (and encouraged) to useaggregate functionsas formalization tools. Moreover,
weak constraintsshall be deployed to compute optimal solutions (Guess-Check-Optimize)
using DLV (http://www.dlvsystem.com, resp., installed in the lab).

2 General Problem Description

In this exercise, we continue working on the referee problemthat has been addressed in
the previous exercise (Answer-Set Programming Exercise 1), i.e., the problem of assigning
papers submitted to a conference to members of the PC. For many conferences, prior to the
assignment of submissions to PC-members, there is abidding phase, where PC-members
can bid on papers. A bid expresses a degree of preference of a member of the PC for
a concrete submitted paper. We will first extend the referee problem taking bids of PC-
members into account, specifying some furtherhard requirementsthat a valid assignment
has to obey. Then, we will formalize somesoft requirements, which should be satisfied as
much as possible, eventually turning the problem into an optimization task, which we will
refer to as theoptimal referee problem.

3 Subtask 1

The first task is to compute solutions to the referee problem as specified in the previous
exercise (Answer-Set Programming Exercise 1), additionally taking into account bids of
the PC-members. More precisely:

• Each member of the PC has the possibility tobid on papers prior to the actual assign-
ment, expressing a degree of preference for a concrete paper. We will assume that
bids are integers in the range of0, . . . , 3 with the following meanings:

0: “I cannot review this paper”,

1: “I don’t want to review this paper”,

2: “I am willing to review this paper”,

3: “I really want to review this paper”.



• The following predicate is used to specify bids, given as input data:

bid(M,P,B): PC-memberM’s bid on paperP is B, whereB is a constant from
{0, 1, 2, 3}.

3.1 Solving the Search Problem: Guess-and-Check

First of all, write a Guess-and-Check programguess-and-check.dl which computes
solutions to the referee problem of the previous exercise (Answer-Set Programming Ex-
ercise 1). However, rather than just copying your previous solution (check.dl and
guess.dl) into a single file,use aggregate atomsin order to simplify your previous
solution. Of course you can reuse your test files for the overall program of the previous
excercise (cf. Section 4.2 of Answer-Set Programming Exercise 1) to check whether the
modified programguess-and-check.dl is correct.

Furthermore, encode the following additional hard requirements into a filecheck-
bids.dl:

(h1) Each PC-member bids at most once for a paper.

(h2) Each PC-member bids on at least two papers different than the default bid, which is
“I don’t want to review this paper” (see also (a1) below).

(h3) If a PC-member rates a submission with “I cannot review this paper”, this paper must
not be assigned to that PC-member.

(h4) A situation where a submission is assigned only to PC-members who rated that paper
with “I don’t want to review this paper” would be highly unfair and shall be explicitly
excluded.

(h5) The assignment average for any PC-member who has been assigned at least one paper
is greater than1.5. I.e., the value of the second argument ofass avg (see below)
is greater than15, andthe first argument is a PC-member. (To check whether the
first argument is a PC-member is necessary for correctness ofthe overall program,
because in Subtask 2 the assignment average will be computedalso for submitted
papers using the binary predicateass avg.)

In addition to checking for these hard requirements, complete the provided information
on bids by formalizing the following default assumption:

(a1) Any member of the PC that did not bid on a particular submitted paper, is assumed
to not wanting to review this paper (bid1, “I don’t want to review this paper”).

In order to compute the assignment average for a PC-member proceed as follows. De-
fine an auxiliary predicateidiv for integer division first:

(a2) idiv(X,Y,Z): X, Y, andZ are integers,Y> 0, such thatZ is the integer result
(rounded down real result) of the division ofX byY (i.e.,Z is the greatest integer less
or equal the real result of the division).

For instance,idiv(9,3,3) andidiv(40,3,13) should be true in any answer set.

Hint: Given integersX andY , the result of the integer division ofX by Y is the maximal
integerZ, such thatP ≤ X holds for the productP = Z × Y .

Based on this, define an auxiliary predicateass avg for the assignment average of a
PC-member. This value shouldonlybe computedfor PC-members who have been assigned
at least one paper. Moreover, to allow for a more fine-grained distinction, i.e., for being
able to consider also the first position after the decimal point of the real average value, the
bids are scaled by a factor of10:

2



(a3) ass avg(M,A): A is the rounded down average of scaled bids issued by PC-member
M for theassignedpapers (i.e.,A is the greatest integer less or equal to the real aver-
age value multiplied by10).

For example, consider a PC-membermwho has been assigned three papersp1, p2, and
p3. The PC-member did bid for these papers as follows:bid(m,p1,1),bid(m,p2,2),
and bid(m,p3,1). Then, the sum of these bids is4 and the sum of scaled bids is
4 × 10 = 40. Since the number of assigned papers is3, we obtain1.3̇ as the real aver-
age value, and13.3̇ as the real average value of the scaled bids. Hence, the assignment
average form is 13 (ass avg(m,13) should be true in the answer set).

Hint: Let S be the sum of bids for papers assigned to a PC-memberM, let S′ = S × 10,
and letN be the number of papers assigned toM. Then, the assignment average valueA for
M is idiv(S’,N,A).

Exercise Requirement: It is obligatory to use aggregate atomsto define the auxiliary
predicatesidiv andass avg. (Apart from that you are encouraged to use aggregate
atoms where suitable, but you are not obliged to do so.)

Hint: Use additional auxiliary predicates for defining the sum of bids for the papers as-
signed to a PC-member, as well as for determining the number of assigned papers.

3.2 Testing the Guess-and-Check Program

Test the functionality ofcheck-bids.dl stand-alone, i.e., without using the fileguess-
and-check.dl, by constructing at leastfive test cases. To this end, for each test casen

(1 ≤ n ≤ 5), safe your data in files as specified in Answer-Set Programming Exercise 1,
i.e.,kwn.dl, submissionsn.dl, pcn.dl, andasgnn.dl. The additional input on
bids (facts of the formbid(M,P,B)) should be contained inpcn.dl. If you specify
more than five test cases, then usen >= 10 for the additional file names (since6 ≤ n ≤ 9

is used for mandatory test cases of Subtask 2).

Note: When testingcheck-bids.dl stand-alone, the maximal range of integers needed
to compute correct solutions depends on the input data (and your implementation). Speci-
fying a range which is too small to carry out all relevant integer calculations may result in
answer sets, which do not correspond to correct solutions.

Exercise Requirement: Design the test cases in such a way that specifying a maximal
integer value of120 is sufficient for computing correct solutions according to your imple-
mentation. (E.g., for at most four papers assigned to a PC-member, since the maximum bid
is 3, 4× 3× 10 = 120 is an upper bound for the sum of scaled bids for the papers assigned
to a PC-member.)

Exercise Requirement:Makecheck-bids.dl self-contained, i.e., defineall auxiliary
predicates you use in this file. However, do not define predicates here, which are part of the
input. So if you want to re-use auxiliary predicates defined in guess-and-check.dl,
then copy their definition tocheck-bids.dl (but do notcopy constraints or guessing
rules).

4 Subtask 2

Apart from the hard requirements accounted for byguess-and-check.dl andcheck-
bids.dl, there also exist soft requirements for the referee problemthat shall be respected
as much as possible. The second task of this exercise is to implement such optimizations
(in a fileoptimize.dl).

3



4.1 Solving the Optimization Problem: Optimize

Consider the following soft requirements for an optimal assignment of submissions to PC-
members:

(o1) Maximize the assignment for papers wrt. bids of PC-members (the willingness of
assigned PC-members to review the paper).

(o2) Minimize the overlap of reviewers (shared papers).

(o3) Maximize the assignment wrt. bids for PC-members providing high bids (concretized
below).

(o4) Maximize the diversity wrt. keywords (fields of competence) for PC-members.

All these requirements have different (decreasing) priorities, where (o1) is the most impor-
tant and (o4) is considered to be the least important requirement.

Exercise Requirements:

ad (o1) In order to formalize condition (o1), compute the assignment average value for
a paperP by defining an auxiliary predicateass avg(P,A) (as for PC-members
in the previous subtask, but the first argument is a paper). Furthermore, use the
maximum bid issued byany PC-member forP, and scale it by factor10 to get an
upper bound for the assignment average value ofP. (Note thatP need not necessarily
have been assigned to a PC-member who issued a maximum bid forit.) For every
paperP, assign the difference between the upper bound and the assignment average
value as a penalty for the assignment.

As an example, consider a paperp with an assignment average value of13 (that is
ass avg(p,13) holds) for which some PC-memberm did bid2 (bid(m,p,2)),
and this is also the highest bid forp. Then, this paper contributes a penalty of2 ×
10 − 13 = 7 to (o1) for the current assignment.

Remark: Do not rely on (*) inguess-and-check.dl, i.e., that each paper is as-
signed to exactly four PC-members, for computingass avg. Rather count the num-
ber of PC-members assigned to a paper in order to makeoptimize.dl reusable
in other settings as well.

ad (o2) Concerning (o2), define an auxiliary predicateoverlap(P1,P2,O) yielding an
overlap valueO for a pair of papersP1 andP2 as follows:O is the product of the
number of PC-members assigned to both papers and a factorf , wheref = 0 if P1
= P2, f = 1 if P1 andP2 do not have an author in common, andf = 2 if P1
andP2 are (co-)authored by a common author. Every paper incurs a penalty for the
assignment that is given by the sum of the overlap values withall other papers.

For instance, consider a paperp1 that has three PC-members assigned which are also
assigned to paperp2, and two PC-members assigned top1 are assigned to a paper
p3, as well. Moreover,p1 andp3 have an author in common, whereasp1 andp2
do not. Then,p1 causes a penalty for (o2) of3 × 1 + 2 × 2 = 7.

ad (o3) Every PC-member who has at least one paper assigned and issued two or more
bids3 (“I really want to review this paper”), but has an assignmentaverage less than
2.0 (ass avg value less than20) causes a penalty for (o3) given by the difference
between20 and itsass avg value.

ad (o4) For every PC-memberM, the number of keywords associated toM such that no
paper with this keyword is assigned toM is the penalty contributed to (o4) byM.

Realize an optimization according to the soft requirementsdefined above and imple-
ment them in a fileoptimize.dl.

4



4.2 Testing the Optimization Program

Test the functionality of the programoptimize.dl stand-alone, i.e., without using the
files guess-and-check.dl andcheck-bids.dl, by constructingfour more test
cases. For each test casen (6 ≤ n ≤ 9), provide the input data in files following the same
naming convention as before. If you specify more than four test cases, then usen >= 10

for the additional file names.

Note: When testingoptimize.dl stand-alone, the maximal range of integers needed
to compute correct solutions depends on the input data and the way you implemented the
requirements foroptimize.dl. Specifying a range which is too small to carry out all
relevant integer calculations may result in answer sets, which do not correspond to correct
solutions.

Exercise Requirement: Design the test cases in such a way that specifying a maximal
integer value of120 is sufficient for computing correct solutions according to your imple-
mentation.

Exercise Requirement:Also optimize.dl has to be self-contained. In case you do re-
use auxiliary predicates fromguess-and-check.dl orcheck-bids.dl, make sure
to define them inoptimize.dl as well (copy their definition), otherwise the latter may
not work as intended when tested stand-alone. (Butdo notcopy constraints or guessing
rules.)

5 Subtask 3

5.1 Testing the Overall Program: Guess-Check-Optimize

In order to test the overall program solving the optimal referee problem—which con-
sists ofguess-and-check.dl, check-bids.dl andoptimize.dl—download
the conference data given by the archiveconference.tar.gz (containingkw.dl,
submissions.dl, andpc.dl) from TUWEL, and answer the following questions (fill
in the form that will be available in TUWEL):

1. How many optimal referee assignments exist for this conference?

2. To which PC-members is paperp2 assigned in optimal assignments?

3. What is (are) the assignment average(s) of PC-memberm3 in optimal assignments?

4. What is (are) the assignment average(s) of paperp1 in optimal assignments?

5. What is (are) the overlap value(s) of papersp2 andp3 in optimal assignments?

6. Is there a violation of (o3) in optimal assignments, and ifso, which PC-members are
affected?

Hint: You may find the DLV command-line options-filter and-pfilter useful for
answering (most of) these questions.

Important:

1. Be sure that you follow the naming conventions as pointed out above.

2. All of the files mentioned above should be contained inone directory!

3. Do not include the command#maxint in your files—rather, execute DLV with the
corresponding command-line option-N to specify the known numbers.

In case of questions, please ask the teaching assistants or send an email to

logprog-fragen-ss09@kr.tuwien.ac.at.

5


