
SEPM/Linux Tasks Winter Term 2009
SE/Linux Team∗

December 28, 2009

1 Task 4
1.1 Focus
This task focuses on implementing and testing the design and project plan from the
previous task with your team.

1.2 Mission
Release two working versions of an EHR provider node.

1.3 Tasks
Your team has designed and planned the implementation of a provider node. Now execute
the design and plan you made. You will have to release two working versions of your
server and present them to your tutor. It is important that you work in accordance with
your plan. If you need to deviate from the plan be sure to document any changes and
keep your design and plan up-to-date.

1.3.1 Reading

• Read the Boost test library documentation at [1].

• Read the Bitten documentation at [2].

• Read the Doxygen documentation at [4].

• Read the libpqxx documentation at [6].

• Read the libxml++ documentation at [7].

∗se-linux@inso.tuwien.ac.at

1

mailto:se-linux@inso.tuwien.ac.at


1.3.2 Designing and coding

• Use your group’s subversion repository.

• We have created a PostgreSQL [5] database for your group. Access it using
libpqxx [6].

• Provide an SQL script to initialize your database.

• Use libxml++ [7] for XML processing.

• Close tasks (tickets) in Trac as soon as they are implemented.

• Use Trac as a communication (or at least management) medium in your team.

• Keep the design document up to date if you change the design.

• If you encounter bugs while working:
– Create a ticket in Trac.
– Assign it to the responsible team member.
– The responsible team member has to accept, fix and close it.

1.3.3 Unit tests

Use the Boost test library [1] to write unit tests for your classes and functions. As a rule
of thumb, the unit tests should cover all your application classes, i.e. every source line of
your application classes should be executed by at least one unit test.

• It is important for your classes to be testable in an automatic way. This can be
achieved by making them not depend on human interaction and decoupling them
from their environment.

• Provide a script that runs all unit tests of your project, or integrate them with
Automake.

• Automake provides support for test suites [3] via a check target that builds all
tests, executes them and displays the results.

The exercise tarball contains examples for writing unit tests.

1.3.4 Continuous integration

Use the Bitten [2] Trac plugin to set up automatic builds of your subversion repository
on every commit. For this, you need to run bitten-slave in a screen(1) session on
both target platforms. An automatic build should:

• Check out the latest revision of your source tree

2



• Configure your source tree

• Build the software to see whether the build has not been broken by the latest
commits

• Build all unit tests

• Run all unit tests and report the test results

• Determine the tests’ code coverage using gcov(1)1 and report it.

The exercise tarball contains an example for this.

1.3.5 Documentation

Your source code has to be documented.

• Document your C++ classes by inserting Doxygen-conform comments into your
header files.

• Write a Doxygen configuration file.

• Use Doxygen to generate HTML documentation.

1.4 Deliverables
• Tag the first release in your subversion repository in /submission/release_1.

• Tag the second release in your subversion repository in /submission/release_2.

• Pre-create Doxygen documentation in HTML format for every release before you
meet your tutor, so you can present it easily.

• Update the design document in your Trac instance if necessary.

• Close tickets from task 3 in your Trac instance.

1At the time of this writing, compiling with gcov support is broken on the NetBSD shell server, so
perform coverage analysis on the GNU/Linux server only.

3



References
[1] Dawes, Beman ; Abrahams, David ; Rivera, Rene ; Rozental, Gennadiy: Boost

C++ Libraries - Boost Test Library. http://www.boost.org/doc/libs/1_35_0/
libs/test/doc/index.html. Version: 2008. – [Online; accessed 2008-05-25]

[2] Edgewall Software: Bitten. http://bitten.edgewall.org/. Version: 2008. –
[Online; accessed 2008-05-25]

[3] Free Software Foundation: Tests - automake. http://www.gnu.org/
software/automake/manual/html_node/Tests.html#Tests. Version: 2008. – [On-
line; accessed 2008-05-25]

[4] Heesch, Dimitri van: Doxygen. http://www.stack.nl/~dimitri/doxygen/.
Version: 2007. – [Online; accessed 2007-03-18]

[5] PostgreSQL Global Development Group: PostgreSQL. http://www.
postgresql.org/. Version: 2008. – [Online; accessed 2008-05-11]

[6] The libpqxx Development Team: libpqxx. http://pqxx.org/development/
libpqxx/. Version: 2008. – [Online; accessed 2008-05-11]

[7] The libxml++ Development Team: libxml++. http://libxmlplusplus.
sourceforge.net/. Version: 2007. – [Online; accessed 2007-02-26]

4

http://www.boost.org/doc/libs/1_35_0/libs/test/doc/index.html
http://www.boost.org/doc/libs/1_35_0/libs/test/doc/index.html
http://bitten.edgewall.org/
http://www.gnu.org/software/automake/manual/html_node/Tests.html#Tests
http://www.gnu.org/software/automake/manual/html_node/Tests.html#Tests
http://www.stack.nl/~dimitri/doxygen/
http://www.postgresql.org/
http://www.postgresql.org/
http://pqxx.org/development/libpqxx/
http://pqxx.org/development/libpqxx/
http://libxmlplusplus.sourceforge.net/
http://libxmlplusplus.sourceforge.net/

	Task 4
	Focus
	Mission
	Tasks
	Reading
	Designing and coding
	Unit tests
	Continuous integration
	Documentation

	Deliverables


